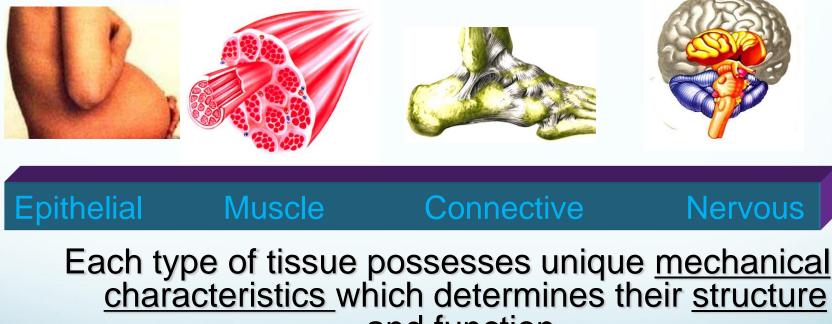
Sports Injuries

Kinesiology 11

OUCH!!!



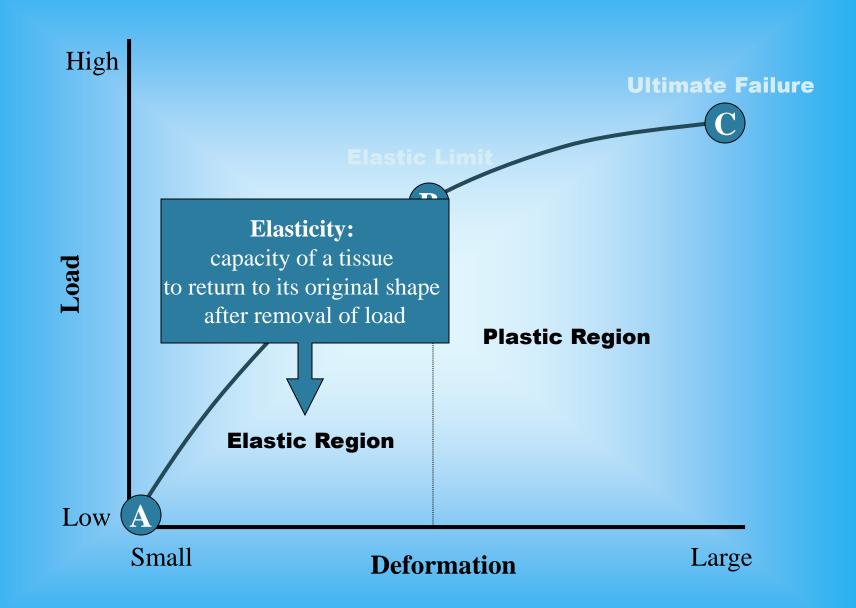
What are they?

- Sports injuries = any injury acquired through <u>exercise</u> or <u>participation</u> in sport
- Generally reserved term for an injury affecting the <u>musculoskeletal</u> system:
 - <u>Muscles</u>
 - Bones
 - Associated structures (cartilage and soft tissues)
- Can include traumatic <u>brain</u> and <u>spinal cord</u> injuries too.
- The cause of injury can vary:
 - Improper training
 - Insufficient warm up or cool down/stretching
 - Poor conditioning
 - Bad equipment
 - Accidents

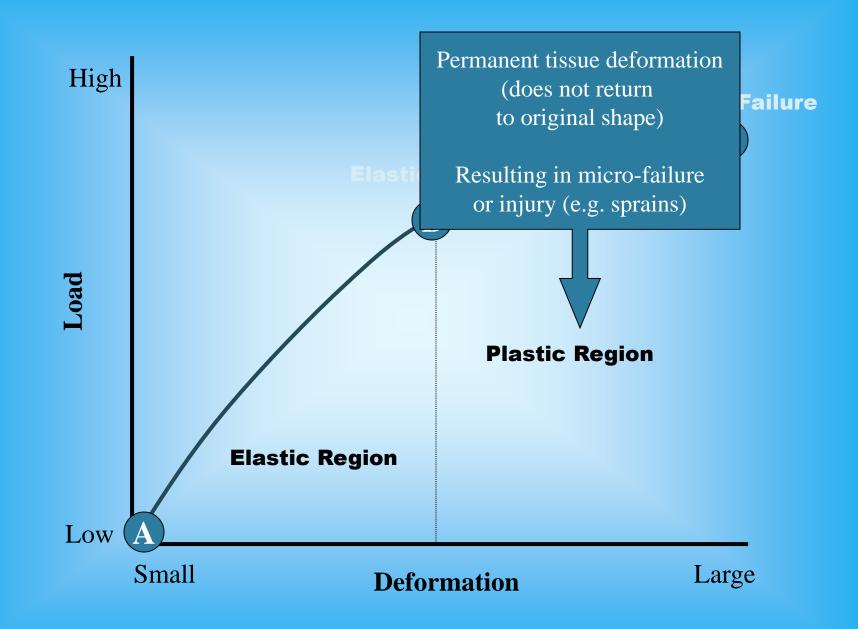
Biomechanical Principals of Injury

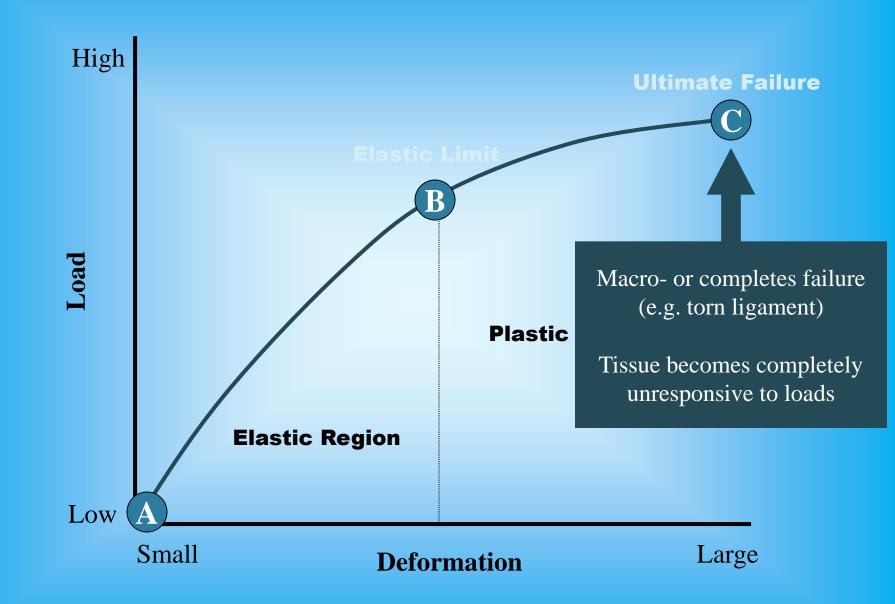
Recall there are 4 types of tissue in the human body:


and function.


Loading

 To best understand the biomechanical characteristics of tissue we examine its behaviour under <u>physical load</u>


Under load a tissue experiences <u>deformation</u>


 Deformation can be visualized through deformation curve

Deformation Curve Explained

- <u>Elasticity</u> is the capacity of a tissue to return to its <u>original</u> shape once the <u>load</u> has been <u>removed</u>
- The <u>yield point (or elastic limit</u>) is where the <u>plastic region</u> begins. This is where tissue no longer has <u>elastic properties</u>
- The <u>plastic region</u> is where we see <u>permanent</u> tissue deformation, meaning that the tissue will <u>no longer return</u> to its original shape.
 - This results in <u>micro-fracture</u> or injury (like <u>sprains</u>).
- At the <u>failure point</u> we see <u>complete failure</u> of the tissue. This is when the tissue is completely <u>unresponsive</u> to loads.
 - Ex. <u>Torn ligament</u>

Tissues Response to Training Loads

A couple different situations may arise when one considers the deformation curve in their training program:

- 1. Training at a load that is <u>equal</u> or <u>less</u> than the <u>elastic</u> <u>limit.</u>
 - Results in micro-failure at the tissue level.
 - This causes <u>new tissue</u> to be created to replace old tissue.
 - Over time will have a positive training effect.

What makes muscles grow?

Tissues Response to Training Loads

- 2. Training at a load greater than the elastic limit
 - Results in permanent failure and injury to the affected area

Studies have shown that:

- Resistance training can increase the <u>size</u> and <u>strength</u> of <u>tendons</u> and <u>ligaments</u>. It is suggested that this may be due to an increase of <u>collagen</u> within the <u>connective tissue</u> sheaths.
- The elastic limit of a tendon or ligament can be <u>enhanced</u> by <u>exercise and training</u>, and can be reduced by <u>aging</u> and <u>inactivity</u>.
 - The elastic limits of ligament are estimated to be <u>12-50%</u>, and the elastic limits of tendon is <u>9-30%</u>

Forces Acting on Tissue

TENSION COMPRESSION

BENDING

SHEAR

TORSION

Injury Treatment and Rehabilitation

Treatment

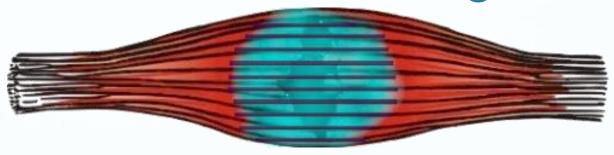
- Received by patient from a <u>health care professional</u>
- Promotes <u>healing</u>
- Improves <u>quality</u> of injured tissue
- Allows <u>quicker return</u> to activity

Rehabilitation

- Therapist's <u>restoration</u> of injured tissue and patient's <u>participation</u>
- Individualized for each athlete

Inflammatory Response Phase

- Inflammation begins at the <u>time of injury</u>
- Signs
 - <u>Redness</u>
 - <u>Swelling</u>
 - <u>Pain</u>
 - Increased <u>temperature</u>
 - Loss of <u>function</u>


- Protect
- Rest
- Cryotherapy (ice/cold water immersion)
 - Decreases swelling, bleeding, pain and spasms
- Compression
 - Decreases swelling
- Elevation
 - Decreases swelling

Fibroplastic Repair Phase

- Repair and scar formation
- Granulation tissue fills the gap
- Collagen fibres are deposited by fibroblasts
- Signs seen in the inflammatory phase subside

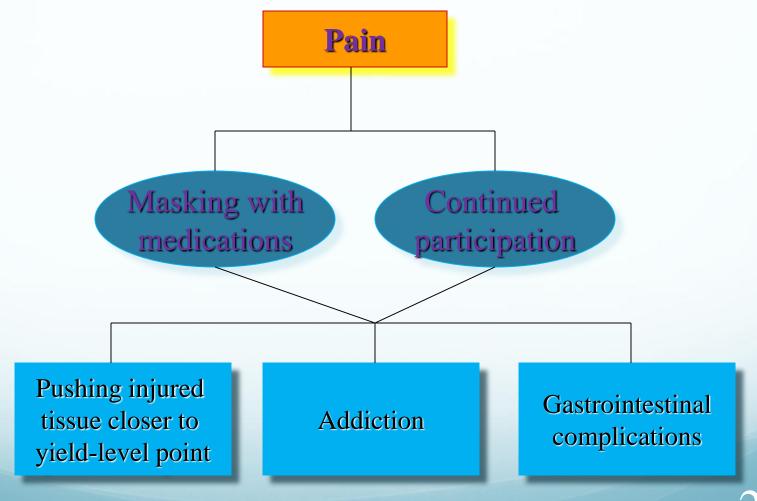
- Rehab-specific exercises
 - Restore <u>range of motion</u> and <u>strength</u>
- Manual massage therapy and ultrasound
 - Help break down <u>scar</u> <u>tissue</u>
- Protective taping and bracing

Maturation-Remodeling Phase

Remodeling or realigning of the scar tissue

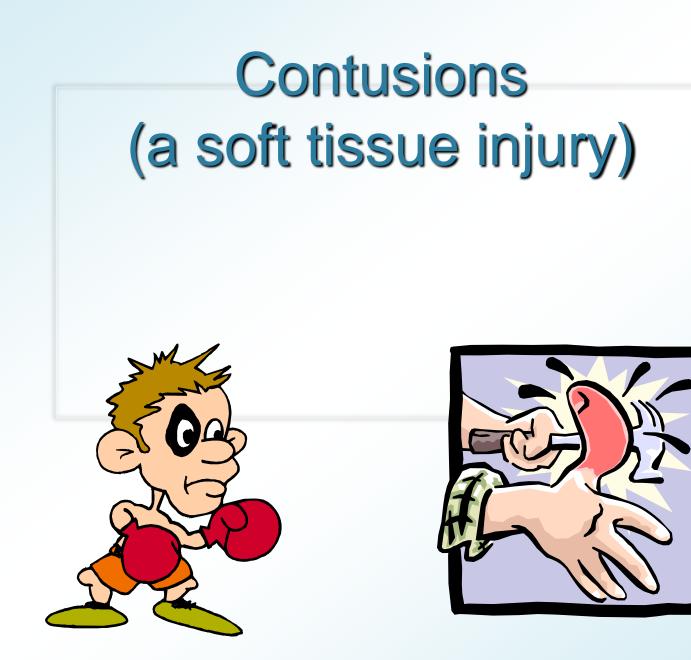
More aggressive stretching and strengthening

- To organize the <u>scar tissue</u> along the lines of tensile stress
- Include sport-specific skills and activities


Pain

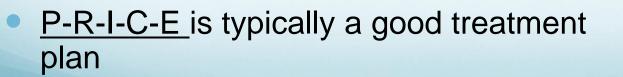
Nature's way of telling us something is wrong

 One of the best indicators of when it is best to resume play

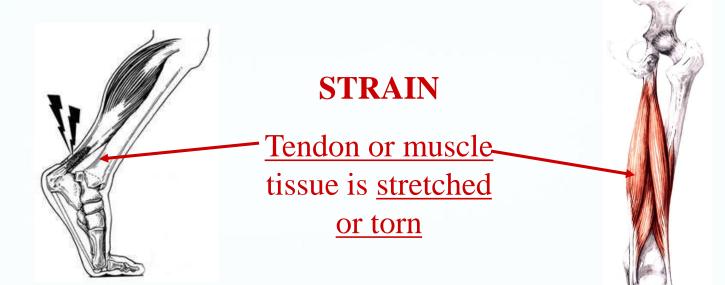


Problem with Ignoring Pain

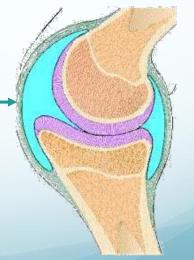
Return to Exercise


- Once pain has subsided, one can begin their gradual return to exercise
- The load placed on an injured area should increase gradually.
- If one overloads an injured area they risk their <u>acute</u> injury becoming a <u>chronic</u> problem.

- Aka a bruise
 - Occurs when a <u>compressing</u> force crushes tissue
 - E.g. "charleyhorse" quadriceps


Symptoms:

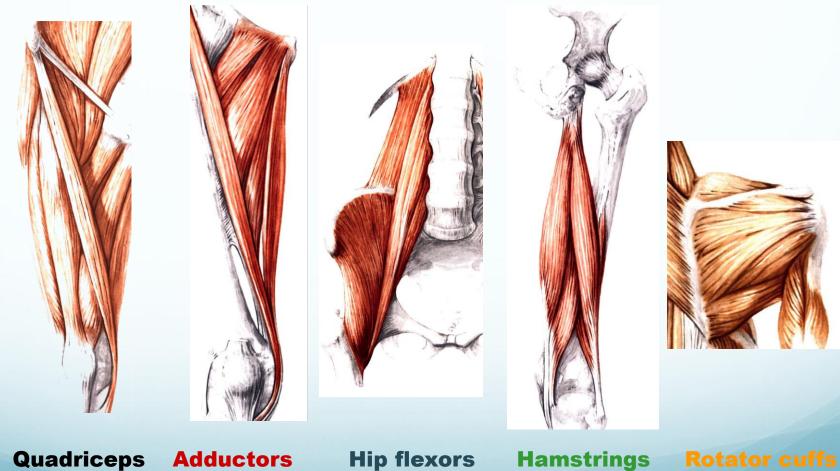
- Discoloration and swelling
- <u>Myositis ossification</u> abnormal bone formation in a severe contusion
- Life-threatening if the tissue involved is a <u>vital organ</u>



SPRAIN

- <u>Ligament</u> or the joint capsule is <u>stretched or</u> <u>torn</u>

Grades of sprains and strains


- GRADE 1
 - <u>Slightly</u> stretched or torn; <u>few</u> muscle fibres
- GRADE 2
 - <u>Moderately</u> stretched or torn, <u>more</u> muscle fibres
- GRADE3
 - Complete <u>rupture</u>
 - <u>Surgery</u> required
 - E.g. ACL tear

Grades and Treatments

Severity	Physical Examination Findings	Impairment	Pathophysiology	Typical Treatment*
Grade 1	Minimal tenderness and swelling	Minimal	Microscopic tearing of collagen fibers	Weight bearing as tolerated No splinting/casting Isometric exercises Full range-of-motion and stretching/ strengthening exercises as tolerated
Grade 2	Moderated tenderness and swelling Decreased range of motion Possible instability	Moderated	Complete tears of some but not all collagen fibers in the ligament	Immobilization with air splint Physical therapy with range-of -motion and stretching/ strengthening exercises
Grade 3	Significant swelling and tenderness Instability	Severe	Complete tear/ rupture of ligament	Immobilization Physical therapy similar to that for grade 2 sprains but over a longer period Possible surgical reconstruction

Common Strains

Rotator cuffs 31

Hamstring Strains

- Most frequently strained muscles
- Mechanism:
 - Rapid <u>contraction</u> in a lengthened position
 - E.g. sprinting and running
- Due to strength imbalance
 - <u>Hamstring</u> strength <<< <u>quadriceps</u> strength

FIX? Emphasize hamstrings and quadriceps equally

Ankle Sprains

- During running, walking, dancing or stepping off a curb
- Most common = <u>lateral ankle sprain</u>
 - Inversion
- Common reoccurrence
 - Decreased proprioception
- Symptoms
 - Rapid swelling
 - Point tenderness
- Rehabilitation
 - Decreases reoccurrence
 - Incorporation of <u>balance</u> exercises

Dislocations

 Great enough forces push the joint beyond its normal anatomical limits

Joint surfaces <u>come apart</u> (full separation)

Subluxation

- When supporting structures (e.g. ligaments) are stretched or torn enough
- Bony surfaces partially separate
- Most common = fingers
- Can become chronic

Shoulder Dislocation

- Most <u>mobile</u> joint, therefore it is the most <u>unstable</u> joint
- Categories of dislocation:
 - Partial (subluxation)
 - Complete
- Most common
 - Head of humerus slips <u>anteriorly</u>
 - Falling <u>backwards</u> on extended arm
- Symptoms
 - Swelling, numbness, pain, weakness, bruising
 - Capsule and/or rotator cuff tears
 - Brachial plexus injury
- Require medical treatment to relocate head of humerus back to glenoid fossa

Fractures

Simple fracture

• Stays within the surrounding soft tissue

Compound fracture

• Protrudes from the skin

• Stress fracture

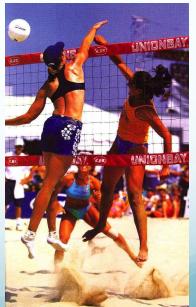
• Results from repeated low magnitude loads

Avulsion fracture

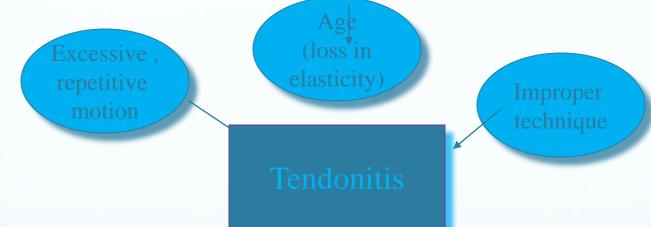
Involves tendon or ligament pulling small chip of bone

Concussions

- Injury to the brain
- Mechanism:
 - Violent shaking or jarring action of the head
 - Brain bounces against the inside of the skull
- Symptoms
 - Confusion
 - Temporary loss of normal brain function
- Best treatment is <u>REST</u>


No such thing as "minor concussion and "shaking it off"

Overuse Injuries


- Due to
 - Repeated and accumulated <u>microtrauma</u>
 - Non-sufficient recovery

- Results from
 - Poor technique
 - Poor equipment
 - Too much training
 - Type of training

Tendonitis

• Inflammation of tendon as a result of a small tear in the tendon

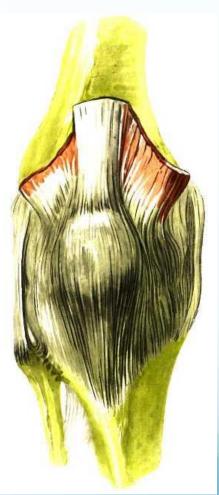
Symptoms

- Pain (aggravated by movement)
- Tenderness
- Stiffness near joint

Tennis Elbow

- Lateral epicondylitis
- Affect forearm extensors
 - Attach to lateral epicondyle
 - Extend wrist and fingers
- Contributing factors
 - Excessive forearm pronation and wrist flexion
 - Gripping racquet too tightly
 - Improper grip
 - Excessive string tension
 - Excessive racquet weight
 - Topspins
 - Hitting ball off-centre

Golfer's and Little League Elbow


- Medial epicondylitis
- Affects tendons of forearm flexors
 - Attach to medial epicondyle
 - Flex wrist and fingers
- May result in collateral ligament and ulnar nerve injury
- May affect medial humeral growth plate in young children (little league elbow)

Jumper's Knee

- Patellar tendonitis
- Affects infrapatellar ligament
- Caused by:
 - Repetitive eccentric knee actions
 - Eccentric load during jump preparation
 >> body weight

Bursitis

- Inflammation of the bursae
 - Tiny fluid-filled sacs
 - Lubricate and cushion pressure points between bone and tendons
- Results from overuse and stress
 - Age is also a factor
- Most common
 - Shoulder, elbow and hip
- Inflammation and pain

aggravated by movement and direct pressure


Shoulder Impingement

Excess movement of the humeral head + lack of space

Inflammation of bursae or rotator cuff tendon

- Result of muscle imbalances in shoulder muscles
 - Weak shoulder depressors
 - Strong shoulder elevators

Balanced strength training

Stress fracture

- Results from repeated low-magnitude forces
- 1. Small disruption of the outer bone layer
- 2. Weakened bone
- 3. Cortical bone fracture
 - NOT a shin splint

Shin splints

- Pain along inside tibial surface
- Involve pain and inflammation
- NO disruption of cortical bone

Injury Prevention

• Wear the proper protective equipment

Warm Up and Cool Down

Keeping Fit and Flexible

• "Use it or lose it"


• Especially important during the off-season

• Preparing the muscle for placing demands

Eating and Resting

- In order to function effectively body must receive
 - Proper nutrient
 - Adequate rest

Avoid over-training and lack of sleeping

