Science 8
5.3 Lenses

We have seen lenses in our microscopes, cameras or eyeglasses.

Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays.

Science 8 (brings together) light rays to a focal point

- Light that passes through a convex lens can be focused on a screen or other surface (projectors or cameras.)

Different lenses have different focal lengths

- Depends on the strength of a lens
- The stronger the lens, the
- The weaker the lens, the

- A strong lens is more curved
- Concave lenses are often used together with convex lenses to help convex lenses give sharper images.

A concave and convex lens together can correct eachother!

Another diagram!!

Converging lens

Draw figure 5.25 on Page 192. Label it clearly and use a ruler for the light rays.

Description:
a more than
A a Fl's a Way
= Image that
is Smaller and UPside down.

Description: and is FL's away. $=\operatorname{lm}$ age is LARGFR and
UPSide down.

Science 8
Fill in the table below:
Convex lenses.

Review of parallel light rays hitting a lens

Convex Lens

Concave Lens

\square
Read pages 190-196 in your textbook
\square Do Pg. 197 \# 1-11 in your textbook

Refracted Light, Lenses and Mirrors
Name \qquad Date \qquad Per_

Purpose: To observe how light rays behave when they pass through a plastic block, a curved lens and a curved mirror.

Materials:

Ray box Lens/Mirror kit Baffle Plastic block

Procedure (Part 1)

1. Adjust the ray box so that the edges of the light beam are parallel. Insert the single slit baffle.
2. Place the plastic block on your paper below.
3. Shine the light ray from the ray box at the plastic block on your paper below. Trace the plastic block.
4. Trace the path of the refracted ray. Use a ruler. Use arrows to indicate the direction of the ray.
5. Remove the plastic block and draw a line connecting your incident and refracted ray.

Observations/Diagrams

1. Adjust the ray box so that the edges of the light beam are parallel. Insert the 5 -slit baffle.
2. Place the convex lens on your paper. Trace the lens.
3. Shine the light rays at the lens.
4. Trace the paths of the refracted rays. Use a ruler. Use arrows to indicate the directions of the rays.
5. Repeat steps $2-4$ for a concave lens.

Observations:

Convex Lens

Concave Lens

1. Adjust the ray box so that the edges of the light beam are parallel. Insert the 5 -slit baffle.
2. Place the convex mirror on your paper. Trace the mirror.
3. Shine the light rays from the ray box at the convex mirror.
4. Trace the paths of the reflected rays. Use a ruler. Use arrows to indicate the directions of the rays.
5. Repeat steps $2-4$ for a concave mirror.

Observations:

Convex Mirror

Concave Mirror

Name \qquad
Date \qquad Per \qquad

1. Use the following words to complete the sentences below

Transparent a desk absorbed transmitted opaque frosted glass translucent window glass reflected
a) Three things can happen to light when it hits matter. It can be \qquad _, or \qquad .
b) Light that is soaked in is \qquad .
c) Light that bounces off matter is \qquad .
d) Light that passes through matter is \qquad .
e) A substance that transmits light as well as detail is said to be \qquad .
f) A substance that blocks light is said to be \qquad .
g) A substance that transmits light but no detail of that light is \qquad .
h) An example of a transparent object is \qquad .
i) An example of an opaque object is \qquad .
j) An example of a translucent object is \qquad .

1. Light is passing through a glass shaped like a triangle. What do we call this kind of glass?

2. What kind of light is entering the prism?
3. The prism is \qquad the light.
4. The white light is breaking up. It is separating into a rainbow of colours. What do we call this rainbow of colours?
5. Which colour has the highest frequency?
6. Which colour has the lowest frequency?
7. Which colour has the longest wavelength?
8. Which colour has the shortest wavelength?
9. Which colour is refracted the least?
10. Which colour is refracted the most?

Fill in the blanks with the terms below:

Visible spectrum	violet	many	orange	Sir Isaac Newton
blue	red	much faster	green	prism
no	yellow	how fast	indigo	

1. Light from the sun gives off light that seems to have \qquad colour.
2. "White" light is really made up of \qquad colours.
3. The colours that make up white light are called the \qquad .
4. The colours of the visible spectrum in order are \qquad
\qquad
\qquad .
5. Colour depends on \qquad the light energy vibrates.
6. We can separate the colours of white light with a prism.
7. The scientist who discovered that colours make up white light was
\qquad _.

Electromagnetic spectrum

1. List the members of the electromagnetic spectrum from left to right
2. The farther to the right you go on the electromagnetic spectrum, the \qquad the frequency of the waves.
3. Which have a higher frequency?
a) Gamma or radio waves?
b) Gamma or cosmic waves?
c) Ultraviolet or x-rays?
d) Infrared or ultraviolet rays?
e) Visible light or radio waves?
4. Which is the only form of energy that we can see?
5. Describe how light is affected by
(a) a transparent object
(b) an opaque object
(c) a translucent object
6. Why is frosted glass often used for bathroom windows instead of clear glass or a solid wall?

True or False?

1. Visible light is part of the electromagnetic spectrum.
2. Visible light takes up only a small part of the electromagnetic spectrum.
3. Every member of the electromagnetic spectrum has the same frequency.
4. We can see every member of the EM spectrum.
5. We can see UV light.

Science 8
6. We can see infrared light.
7. UV light has too high of a frequency for us to see it.
8. Infrared light has too high of a frequency for us to see it.
9. Infrared rays are heat rays.
10. The sun gives off ultraviolet and infrared energy.

Complete the table below. In the second column, classify each material as transparent, opaque, or translucent. In the third column, state whether light is absorbed, reflected, transmitted, or scattered when it strikes the material. In the last two boxes of the first column, write your own examples.

Material	Classification	Behaviour of light
glass		
white clouds		
stained glass window		
aluminum foil		
fog		
cellophane		
cardboard		
wax paper		
black chalkboard	transparent	
mirror		scattered

Use the following words to complete the sentences below

Incident	angle of incidence	equal	angle of reflection	
ray	normal	reflected	is not	refraction
more slowly	away from	more	air	at an angle
towards	less			

(a) A single line of light energy is called a \qquad .
(b) A ray that strikes a surface is called an \qquad ray.
(c) A "bounced" ray is called a \qquad ray.
(d) A line that makes a 90° angle to a surface is called a \qquad .
(e) The angle between an incident ray and its normal is called the \qquad .
(f) The angle between a reflected ray and its normal is called the \qquad .
(g) An angle of incidence is \qquad to its angle of reflection.
(h) The bending of light as it passes from one medium to another is called \qquad .
(i) Refraction takes place when light strikes a surface \qquad to the normal.
(j) Light that strikes a surface in the same direction as the normal \qquad refracted.
(k) Light travels at about 300000 kilometres per second in \qquad .
(I) Glass and water are \qquad dense than air.
(m) Light travels \qquad in glass or water than it does in air.
(n) Light that moves at an angle from a less dense medium to a more dense medium is refracted \qquad the normal.
(o) Light that moves at an angle from a more dense medium to a less dense medium is refracted \qquad the normal.

Use the following words to complete the sentences below

Refracts	smaller	centre	focal length	concave
convex	focal point	larger	edge	

1. A lens is a transparent material that ___ light in a definite way.
2. The two main types of lenses are \qquad and \qquad .
3. A concave lens makes things look \qquad .
4. A convex lens makes things look \qquad .
5. The thickest part of a convex lens is its \qquad .
6. The thickest part of a concave lens is its \qquad .
7. A \qquad lens can form an image on a screen.
8. A \qquad lens cannot form an image on a screen.
9. The point where converging light meets is the \qquad .
10. The distance between a lens and its focal point is called its

Convex \& Concave Lenses

1. Describe a concave lens.
2. Light rays \qquad when passing through a concave lens.
3. Describe a convex lens.
4. Light rays \qquad when passing through a convex lens.
5. Sometimes people use the phrase double convex or double concave to describe a lens. They are referring to the shape of each surface. To identify concave and convex lenses, it is the thickness of the glass in the middle compared to the thickness at the edges that counts. Classify the following lenses as convex or concave.

6. Draw the paths of the light through each of the following lenses.

Concave lens with small curve

Convex lens with small curve

Concave lens with large curve

Convex lens with large curve

Technology using Mirrors, Lenses and Prisms
Name \qquad
Date \qquad Per \qquad

Science 8
Label the lenses and mirrors in these diagrams as concave, plane, or convex. Record your answers at the bottom of the page.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad 6. \qquad
6. \qquad
7. \qquad 9. \qquad
8. \qquad 11. \qquad

HOW DOES IT WORK?

Magnifying Glass

When viewing an upright object, the observer sees a magnified, upright image.

Refracting Telescope

The eyepiece acts like a magnifying glass, so the observer sees a magnified, inverted image of the real image cast by the objective lens.

